Mechanism for fetal globin gene expression: role of the soluble guanylate cyclase-cGMP-dependent protein kinase pathway.
نویسندگان
چکیده
Despite considerable concerns with pharmacological stimulation of fetal hemoglobin (Hb F) as a therapeutic option for the beta-globin disorders, the molecular basis of action of Hb F-inducing agents remains unclear. Here we show that an intracellular pathway including soluble guanylate cyclase (sGC) and cGMP-dependent protein kinase (PKG) plays a role in induced expression of the gamma-globin gene. sGC, an obligate heterodimer of alpha- and beta-subunits, participates in a variety of physiological processes by converting GTP to cGMP. Northern blot analyses with erythroid cell lines expressing different beta-like globin genes showed that, whereas the beta-subunit is expressed at similar levels, high-level expression of the alpha-subunit is preferentially observed in erythroid cells expressing gamma-globin but not those expressing beta-globin. Also, the levels of expression of the gamma-globin gene correlate to those of the alpha-subunit. sGC activators or cGMP analogs increased expression of the gamma-globin gene in erythroleukemic cells as well as in primary erythroblasts from normal subjects and patients with beta-thalassemia. Nuclear run-off assays showed that the sGC activator protoporphyrin IX stimulates transcription of the gamma-globin gene. Furthermore, increased expression of the gamma-globin gene by well known Hb F-inducers such as hemin and butyrate was abolished by inhibiting sGC or PKG activity. Taken together, these results strongly suggest that the sGC-PKG pathway constitutes a mechanism that regulates expression of the gamma-globin gene. Further characterization of this pathway should permit us to develop new therapeutics for the beta-globin disorders.
منابع مشابه
HEMOSTASIS, THROMBOSIS, AND VASCULAR BIOLOGY Hemin induces neuroglobin expression in neural cells
Neuroglobin is a newly identified vertebrate globin that binds O2 and is expressed in cerebral neurons. We found recently that neuronal expression of neuroglobin is stimulated by hypoxia and ischemia and protects neurons from hypoxic injury. Here we report that, like hemoglobin and myoglobin, neuroglobin expression can also be induced by hemin. Induction was concentration dependent and time dep...
متن کاملPharmacological activation of soluble guanylate cyclase protects the heart against ischemic injury.
BACKGROUND The role of the nitric oxide/cGMP/cGMP-dependent protein kinase G pathway in myocardial protection and preconditioning has been the object of intensive investigations. The novel soluble guanylate cyclase activator cinaciguat has been reported to elevate intracellular [cGMP] and activate the nitric oxide/cGMP/cGMP-dependent protein kinase G pathway in vivo. We investigated the effects...
متن کاملLong-term potentiation in hippocampus involves sequential activation of soluble guanylate cyclase, cGMP-dependent protein kinase and cGMP-degrading phosphodiesterase, alterations in hyperammonemia
Hyperammonemia is considered the main responsible for the neurological alterations found in liver disease and hepatic encephalopathy, including decreased intelectual and cognitive function. Ammonia affects both excitatory and inhibitory synaptic transmission in the mammalian brain by a variety of mechanisms. LTP is impaired in hyperammonemia and this may contribute to the impairment of cognitiv...
متن کاملIn Search of Enzymes with a Role in 3′, 5′-Cyclic Guanosine Monophosphate Metabolism in Plants
In plants, nitric oxide (NO)-mediated 3', 5'-cyclic guanosine monophosphate (cGMP) synthesis plays an important role during pathogenic stress response, stomata closure upon osmotic stress, the development of adventitious roots and transcript regulation. The NO-cGMP dependent pathway is well characterized in mammals. The binding of NO to soluble guanylate cyclase enzymes (GCs) initiates the synt...
متن کاملRegulation of insulin-like growth factor-binding protein-1 by nitric oxide under hypoxic conditions.
Nitric oxide (NO) is believed to play an important, but as yet undefined, role in regulating hypoxia inducible gene expression. Recently, we have reported evidence suggesting that the human insulin-like growth factor-binding protein-1 (IGFBP-1) gene is directly regulated by hypoxia through the hypoxia-inducible factor-1 pathway. The goal of the current study was to investigate NO regulation of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 98 4 شماره
صفحات -
تاریخ انتشار 2001